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A kinetic theory treatment of the influence of perpen-
dicular magnetic and electric fields on the viscosity is given
for a polar gas of symmetric top molecules. Expressions
for the 9 independent viscosity coefficients are derived. In
particular, the electric field influence on the transverse
viscomagnetic pressure difference is studied.

In the presence of an external magnetic or electric
field, the viscosity coefficient of a polyatomic gas
becomes a field dependent 4-th rank tensor (Senft-
leben-Beenakker effect [1]). In the magnetic case,
this tensor is determined by 5 independent viscosity
coefficients [2], three being even and two being odd
in the field. The latter giverise to transverse pressure
differences [3]. In the electric case, the odd-in-field
coefficients are absent because of parity reasons
and only three independent even-in-field coefficients
remain. All these coefficients have been related
[4, 5] to collision integrals of the linearized Wald-
mann-Snider collision operator [6, 7].

If a polar gas is simultaneously influenced by a
magnetic and an electric field, the symmetry of the
system is lowered and the number of independent
viscosity coefficients increases. The following treat-
ment is confined to perpendicular electric and
magnetic fields E and H; unless E| H, the general
case can always be reduced to this case. From
inspection of the viscosity tensors written down in
a coordinate frame given by E, H and E X H, one
infers the existence of 9 independent viscosity
coefficients. In the present letter the magnetic- and
electric field dependence of these coefficients is
explained for a polar gas of symmetric top mole-
cules, and the change of the transverse visco-
magnetic pressure difference in an electric field is
discussed.

Starting point of our kinetic treatment is the
linearized Waldmann-Snider equation
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for the relative deviation @ of the distribution
operator from equilibrium, o (®) is the linearized
Waldmann-Snider collision operator and

i P(E,H) = — (e E + pm - H), .. 1- (2)

is the Liouville operator governing the free
precessional motion of the electric and magnetic
moments e and pm, respectively.

The nonequilibrium distribution @ which depends
on time ¢, position x, molecular velocity ¢, molecular
rotational angular momentum J and its component
along the body fixed symmetry axis, J |, is expanded
into a series of moments (moment method, cf.
Refs. [8, 9]). For our purpose, it is sufficient to
take into account the following moments:
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The bracket {:--) denotes a nonequilibrium average
and {--+)¢ an equilibrium average ; the bar — means
the symmetric irreducible part of a tensor. The
following moment equations are obtained for the
stationary case:

wPP+ oPAA = — 2 Vo, 3)
0APP + AN+ oA+ owpd:B=0, (4)
wog8: A+ wBB=0. (5)

Here, wA, w?, oB are the relaxation frequencies of
the corresponding tensors and wAP=wPA is the
coupling coefficient of friction pressure tensor and
tensor polarization ; wu = gett ux H R is the magnetic
Larmor frequency where ux is the nuclear magneton
andgett =g, (1+ (91— 9,)/g. <J|2/T20) is aneffective
rotational g-factor [10] and

wg = pe E(J2)07 1 ((J2J 2 (J2 — 3/4) )0/
CJR(J2 — 3[4))0) /2 h
is the effective electric Larmor precession fre-

quency with ue being the electric dipole moment.
The fourth rank tensors J# and & describe the
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rotation of irreducible 2nd rank tensors around the
respective magnetic and electric field directions h
and e [11]. By use of the technique of projection
operators developed by Hess and Waldmann [11],
Eq. (5) is easily solved to give B in terms of A.
Insertion of the result in Eq. (4) yields
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> (1+m2gg2+ ingu) P (e): P™ (h): A
S — — (@AP0YP.  (6)

In Eq. (6), Z(m (e) and 2™ (h) are the respective
fourth rank projection operators for the electric
and magnetic case [11], ¢ = (wg2/wA wB)1/2 and
¢u = wa/wA are the corresponding effective preces-
sion angles. The double sum of the 1.h.s. of Eq. (6)
can be regarded as a 6 X6 matrix (acting on the
6-column A) if a matrix label is identified with a
pair of tensor indices. Since the tensors are traceless,
the original system of 6 linearly dependent tensor
equations can be reduced to a system of 5 linearly
independent equations. Choosing k in z-direction,
e in y-direction and e x h in x-direction and the 22,
¥y, &y, y2, ¥z-components as the independent ones,
one can solve Eq. (6) for A by matrix inversion:

A= — (wAP/wA) o/ (E,H): P. (7)

Switching back to 6 components, we obtain the
following expressions for the 9 non-vanishing ele-
ments of the &7-tensor:

W ww=2(fife+ 91)3(frfe + 4f391) ,

Wy oy = — Uy oy
= — g2 fo/(f1fz + 4f3 1),

e =%
=— (fife+491)8(frf2 +4f3 91)
Az 7 =2(f3 + 4918 (frfe + 4faq1)

WU = Uy =2
= (fa — 1) g2/2(frf2 + 4f391) , (8)

Uy = f2/2(f1 f2 + 4f391),

A= =h/2(ife + 1),

U % = — U= =92/2([Lf2 + 91),
Az %2 =F/2(frfa+g1) .

Note, that A7z = —Ay,  — AL etc. The field
dependent functions f; ... g2 are given by
fi=14 92 fo=1+4¢g2
fa=1+3¢ge%; (9)
g1=g¢u% g2= qu. (10)

From Egs. (7), (3), the viscosity tensor 0 (E, H)
in our coordinate frame is obtained as
(wAP)2
n(E. H) = (p/w?)| A + P oA /(E,H)|, (11)

where p is the pressure and A is the fourth rank
isotropic unit tensor

Am', %A = %(611): 51'). + 6/1}. 67;1) - _1; 6#7 (Sx}. .

For H=0 or E =0 the well known formulae for
the electric [5] and magnetic [4] Senftleben-
Beenakker effect are recovered. From Eq. (11) the
relative change of the viscosity in perpendicular
electric and magnetic fields can be inferred as

Anfn = — (0AP)% /0P wh) (12)
(A (E=0,H=0)— /(E, H)).

Of particular experimental interest is the influence
of the electric field on the transverse viscomagnetic
pressure difference. For a rectangular channel with
linear dimensions Lz, Ly> L,, a gas flow v in
z-direction (H in z-direction and E in y-direction)
the velocity gradient tensor is Vva 0v/dzeze,.
With the help of the Navier Stokes equation a
transverse pressure difference (dp), due to an
applied pressure difference (dp), in z-direction can
be calculated from Egs. (8), (11):

(wAP)2
(0p)y = — ((0p)z/Lz) Ly —JP:SA— YH

‘[(1 + pe?) (1 + 49£?) + eu?]!.

(13)

For an experimental setup with L;=35mm,
Ly=15mm and a pressure p=1 torr, (dp)y/(0p)z
is calculated for the gas NF3 as function of H with
E as parameter. Values for p/H and (wAF)2/wP w4
are taken from van Ditzhuysen’s measurements
[10] on the magnetic Senftleben-Beenakker effect
of polar gases while ¢g/E is inferred from the
experiments [12] on the electric Senftleben-
Beenakker effect of viscosity. The result is shown
in Figure 1. With increasing E, the magnitude of
the viscomagnetic transverse pressure difference
decreases and at the same time the position of the
maximum is shifted towards higher H-values. This
decrease is obviously due to the additional precission
of the molecules in the electric field which gives rise
to a further destruction of tensor polarization.
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Fig. 1. The dimensionless trans-
verse viscomagnetic pressure dif-
ference 4 (p)y/(dp)z for NF3 at 1
torr and 300 K as function of
magnetic field strength H, (in kOe)

» H(in kOe) for several values of the electric
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