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A kinetic theory treatment of the influence of perpen-
dicular magnetic and electric fields on the viscosity is given 
for a polar gas o f symmetric t op molecules. Expressions 
for the 9 independent viscosity coefficients are derived. In 
particular, the electric field influence on the transverse 
viscomagnetic pressure difference is studied. 

In the presence of an external magnetic or electric 
field, the viscosity coefficient of a polyatomic gas 
becomes a field dependent 4-th rank tensor (Senft-
leben-Beenakker effect [1]). In the magnetic case, 
this tensor is determined by 5 independent viscosity 
coefficients [2], three being even and two being odd 
in the field. The latter give rise to transverse pressure 
differences [3]. In the electric case, the odd-in-field 
coefficients are absent because of parity reasons 
and only three independent even-in-field coefficients 
remain. All these coefficients have been related 
[4, 5] to collision integrals of the linearized Wald-
mann-Snider collision operator [6, 7]. 

If a polar gas is simultaneously influenced by a 
magnetic and an electric field, the symmetry of the 
system is lowered and the number of independent 
viscosity coefficients increases. The following treat-
ment is confined to perpendicular electric and 
magnetic fields E and H ; unless E\\ H, the general 
case can always be reduced to this case. From 
inspection of the viscosity tensors written down in 
a coordinate frame given by E, H and E x H, one 
infers the existence of 9 independent viscosity 
coefficients. In the present letter the magnetic- and 
electric field dependence of these coefficients is 
explained for a polar gas of symmetric top mole-
cules, and the change of the transverse visco-
magnetic pressure difference in an electric field is 
discussed. 

Starting point of our kinetic treatment is the 
linearized Waldmann-Snider equation 
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Z0 d0 
- j ^ - + c • — + i & (E, H) 0 + <o(0) = 0 , (1) 

for the relative deviation 0 of the distribution 
operator from equilibrium, co(0) is the linearized 
Waldmann-Snider collision operator and 

i H) ••• = - [({Xe • E -J- [Am • H),...]_ (2) 

is the Liouville operator governing the free 
precessional motion of the electric and magnetic 
moments and (xm, respectively. 

The nonequilibrium distribution 0 which depends 
on time t, position x, molecular velocity c, molecular 
rotational angular momentum J and its component 
along the body fixed symmetry axis, Jy, is expanded 
into a series of moments (moment method, cf. 
Refs. [8, 9]). For our purpose, it is sufficient to 
take into account the following moments: 

a = (m/kB To)xl2(c) (oc mean velocity), 
P = {ml]/2kBT0)<c~cy (oc friction 

pressure tensor), 

A = (15/2 <J2(J2 _ 3 /4)>o) 1 /2<J/ ) 
(tensor polarization) 

and 

B = (15/2 <J|,2J*(J2-3/4)>o)i/»</|| J J > . 

The bracket • •) denotes a nonequilibrium average 
and • ->o an equilibrium average; the bar •—, means 
the symmetric irreducible part of a tensor. The 
following moment equations are obtained for the 
stationary case: 

cop P + coPA A = - j/:2 Vv , (3) 

w A P P + ft>AA + c o H ^ : A + eoE<f:B = 0, (4) 

coe $ '• A + w B B = 0 . (5) 

Here, coA, cop, eoB are the relaxation frequencies of 
the corresponding tensors and a)AP = cyPA is the 
coupling coefficient of friction pressure tensor and 
tensor polarization; o>h = <7eff Hj% is the magnetic 
Larmor frequency where jun is the nuclear magneton 
and^eff = £^(1 + (9\\-g±)lg±<J ||2M2>o) is an effective 
rotational (/-factor [10] and 

WE = ^ e £ < J 2 > 0 - W 2 < W 2 - 3/4)>O/ 
< J 2 ( J 2 _ 3 / 4 ) > o ) 1 / 2 £ 

is the effective electric Larmor precession fre-
quency with /ue being the electric dipole moment. 
The fourth rank tensors and £ describe the 
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rotation of irreducible 2nd rank tensors around the 
respective magnetic and electric field directions h 
and e [11]. By use of the technique of projection 
operators developed by Hess and Waldmann [11], 
Eq. (5) is easily solved to give B in terms of A. 
Insertion of the result in Eq. (4) yields 

• 2 
2 ( 1 + m 2 y E 2 + in(pn)^m){e): A 

m,n= —2 
= - (coAP/coA) P . (6) 

In Eq. (6), and (h) are the respective 
fourth rank projection operators for the electric 
and magnetic case [11], CP^ = (COE2ICOACOB)1/2 and 
<pH = coh/coa are the corresponding effective preces-
sion angles. The double sum of the l.h.s. of Eq. (6) 
can be regarded as a 6 x 6 matrix (acting on the 
6-column A) if a matrix label is identified with a 
pair of tensor indices. Since the tensors are traceless, 
the original system of 6 linearly dependent tensor 
equations can be reduced to a system of 5 linearly 
independent equations. Choosing h in 2-direction, 
e in ^-direction and e X h in ^-direction and the zz, 
yy, xy, yz, xz-components as the independent ones, 
one can solve Eq. (6) for A by matrix inversion: 

A = — (coAP/coA) st (E, H): P . (7) 

Switching back to 6 components, we obtain the 
following expressions for the 9 non-vanishing ele-
ments of the j^-tensor: 

= 2(/i h + 0i)/3(/i h + 4/sflri), 
91'—• " = _ 9I1—' " , xy <xxy, yy 

= - gzhHhh + gi), 
^yy, zz zz, yy 

= ~ (/i /2 + 4flri)/3(/i/2 + 4/3 9i), 
^zz, zz = 2 (/f + 4gri)/3 (/i /2 + 4/3 gi), 
9 1 " " = **• zz, xy <Kxy, zz 

= (f2 - 1) g2j2 (hf2 + 4/301) , (8) 

= /2 + 4/asri), 
= / i /2( / i /a + flri), 
= - « = 92/2 (/1 /2 + 01), 

2 t e = / 2 / 2 ( / i / 2 + ? i ) . 
Note, that « 3 , . . . = - ^w,... ~ e t c - T h e field 

dependent functions /1 . . . gr2 are given by 

/I = 1 + ?E2, /2 = 1 + 4^E2, 
/3 = 1 + 3 ̂ E2 ; (9) 

From Eqs. (7), (3), the viscosity tensor r\(E. H) 
in our coordinate frame is obtained as 

/ (coAP)2 \ 
ri(E.H) = (p/co?) A + ^ - L - s/(E, H) J , (11) 

\ CO C0A ] 

where p is the pressure and A is the fourth rank 
isotropic unit tensor 

A uv, xA = 2 (3/ix ^vk &vx) 3 dfiv <5*;, . 

For H = 0 or E = 0 the well known formulae for 
the electric [5] and magnetic [4] Senftleben-
Beenakker effect are recovered. From Eq. (11) the 
relative change of the viscosity in perpendicular 
electric and magnetic fields can be inferred as 

At]lrj = - ((COap)2/cop coA) (12) 
• (s/(E = 0, H = 0) - s/(E, H)) . 

Of particular experimental interest is the influence 
of the electric field on the transverse viscomagnetic 
pressure difference. For a rectangular channel with 
linear dimensions Lx, Lz, a gas flow v in 
^-direction (H in 2-direction and E in y-direction) 
the velocity gradient tensor is Vi? ^ dv/dz exez. 
With the help of the Navier Stokes equation a 
transverse pressure difference (dp)y due to an 
applied pressure difference (dp)x in ^-direction can 
be calculated from Eqs. (8), (11): 

(coAP)2 

my = - ((dp)xILx) Ly cpH (13) 
CO CO 

•[(1 + ?e2 ) (1+4<PE2 ) + ?H 2 ] - 1 . 

For an experimental setup with Lx = 35 mm, 
Ly— 15 mm and a pressure p— 1 torr, (dp)yl(dp)x 

is calculated for the gas NF3 as function of H with 
E as parameter. Values for cp^jH and (a>AP)2/copcoA 

are taken from van Ditzhuysen's measurements 
[10] on the magnetic Senftleben-Beenakker effect 
of polar gases while cp-^jE is inferred from the 
experiments [12] on the electric Senftleben-
Beenakker effect of viscosity. The result is shown 
in Figure 1. With increasing E, the magnitude of 
the viscomagnetic transverse pressure difference 
decreases and at the same time the position of the 
maximum is shifted towards higher //-values. This 
decrease is obviously due to the additional precission 
of the molecules in the electric field which gives rise 
to a further destruction of tensor polarization. 

9 i = <f h 2 , g 2 = < f n - (10) The author thanks Dr. H. Vestner for discussions. 
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Fig. 1. The dimensionless trans-
verse viseomagnetic pressure dif-
ference 4 (öp)yf(öp)x for NF3 at 1 
torr and 300 K as function of 
magnetic field strength Hz (in kOe) 

H(inkOe) for several values of the electric 
field strength Ey (in V / c m ) . 
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